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Abstract

The sedimentation of solid spherical particles in an initially quiescent fluid is investigated through nu-
merical simulations. Under conditions of Stokes flow, the results provide good agreement with experiments

for the mean settling velocity while the velocity fluctuation levels grow with the size of the system in ac-

cordance with theoretical predictions for homogeneous suspensions. New results on finite Reynolds

number suspensions are presented that illustrate the role of wake-induced interactions between particles. A

significant reduction in the average settling velocity is explained by an enhancement of a wake-induced

scattering process. Anisotropy in the fluid flow is evident and the evolution of velocity correlations is in-

vestigated for various particulate Reynolds numbers. Increases in Reynolds number tend to decrease the

integral length scale of the fluctuating flow field and reduce significantly the Lagrangian time scale of the
velocity fluctuations. Analysis of the evolution of fluctuation levels when the domain width grows indicates

that inertial screening dramatically reduces the divergence.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The description of hydrodynamic interactions in dispersed two-phase flows is of great interest
for the design of many industrial processes. As an example, mixing of powders in a reactive
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solvent is omnipresent in chemical engineering. Such configurations are commonly encountered
too in environmental sciences: settling of micro-organisms (plankton) and migration of micron-
scale particles is widely studied in oceanography, pollutant transport in underground water re-
source and dusty gas ejection from industrial chimneys are strictly controlled to define safety
areas.

Most of the problems involved in the prediction of such complex hydrodynamic interactions
arise from the extremely large scatter of length scales present in the flow. Due to an inverse
cascade of energy transport, energy supplied at the smallest scales can induce large-scale motions
in the fluid. Even at low volume concentration (few percent), the motion of monodisperse
spherical solid particles in a suspension cannot be predicted by homogeneous theory due to non-
random, multi-body interactions. From the wake-induced flow between two nearby particles to
the creation of clusters of particles whose dynamics are mainly controlled by large-scale collective
effects, the succession of interactions provides momentum transfer at all scales. Numerical sim-
ulations of the motion of both phases (liquid and particles) provide a valuable tool to investigate
the evolution of settling characteristics.

Beyond the applications to engineering, the mean settling velocity in a suspension and the
relative velocity fluctuations are of particular interest from a fundamental point of view. For low
Reynolds number flows (Stokes approximation), numerous theoretical, experimental and nu-
merical results are available (see Davis, 1996 for a detailed review). The evolution of the mean
settling velocity for a monodisperse suspension is not a subject of controversy. On the other hand,
Caflish and Luke (1985) predicted a divergence of the velocity fluctuations of the suspension with
increasing size of the container. Most experiments do not exhibit such a divergence and fluctu-
ation levels saturate for larger containers (see Nicolai and Guazzelli, 1995; Segr�ee et al., 1997). In
recent investigations into the dynamics of Stokes suspensions, arguments involving non-homo-
geneity due to vertical concentration gradients (Mucha et al., submitted to J. Fluid Mech., 2002;
Dance, 2002) or long-range screening related to sidewalls (Brenner, 1999; Ladd, 2002; Bernard-
Michel et al., 2002) have been proposed. In the case of finite Reynolds numbers, most of the
questions are still open. What is the impact of the loss of fore-and-aft wake symmetry on the
average settling velocity and the fluctuations? The purpose of the present paper is to provide new
results on random homogeneous suspensions at finite Reynolds number using two-way coupling
simulations. The particles are considered non-Brownian and experience only hydrodynamic in-
teractions when settling under gravity. We consider only periodic boxes for the simulations in
order to avoid any additional factors from non-homogeneity.

The present paper is organized as follows. Particular features of the force-coupling method
(FCM) used to simulate the two-phase flow dynamics are briefly outlined. Results on settling in
Stokes suspensions are presented and compared to theoretical and experimental evidence in the
literature. New results on finite Reynolds suspensions are then given and the associated flow
structure is investigated.

2. Two-way coupling approach

Direct numerical simulation of dispersed two-phase flows is clearly difficult with present
computing resources, even with the notable successes of Hu (1996) and Johnson and Tezduyar
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(1996). A major difficulty lies in imposing the no-slip condition on the freely moving particles.
Such simulations generally require the use of a time-dependent mesh that evolves, following in-
dividual particles. Different approaches have been taken by Glowinski et al. (1999), Patankar et al.
(2000) and by Esmaeeli and Tryggvason (1998), where particles surfaces are tracked on a fixed
mesh. All these simulations are limited so far to relatively low numbers of particles due to the need
to resolve the flow at the particle surface, and so restricting the range of applications. Indeed the
length scales involved in dispersed two-phase flows are spread between the smallest scales in
the wake of each particle to the largest related to the geometry of the vessel. In a Stokes flow, the
velocity field induced by the motion of a single sphere can be represented by a multipole ex-
pansion. When two or more spheres are settling, the hydrodynamic interactions may be split into
a far and a near-field flow. Brady and Bossis (1988) took advantage of this length scale dis-
crimination to develop the method of Stokesian dynamics. The far-field hydrodynamic interac-
tions are represented by the first few multipoles and the corresponding induced flow while
lubrication forces are included in a pair-wise fashion to represent the near-field effects. Im-
provements have been made recently by Sierou and Brady (2001) but limitations remain as to the
number of particles that can reasonably be simulated and the method is restricted to Stokes flow.

Thus, approximate models are needed for the effects of the motion of finite size particles on the
fluid flow. At first order, the particles induce velocity perturbations that may be represented by
momentum source terms added to the Navier–Stokes equations. When the assumption that the
particles are smaller than all relevant length scales of the flow is valid, each particle can be
modeled by a point-force. This procedure has been successfully used to study turbulence mod-
ulation induced by collective effects of the dispersed phase in gas–solid flows (Elghobashi and
Truesdell, 1993). But this kind of model is not appropriate to investigate hydrodynamic inter-
actions between particles encountered in sedimenting suspensions. The basic idea of a point-force
model is that the velocity perturbation induced by an individual particle is negligible with regard
to the collectively induced modifications. This type of model is unable to account for the direct
hydrodynamic interactions between individual particles.

In the FCM introduced by Maxey et al. (1997), the momentum source is no longer a Dirac
function but is spread on the numerical mesh by using a finite-sized envelope with a spherical
Gaussian distribution. The entire domain is filled by an incompressible Newtonian fluid, see (1)
and (2), including the volume occupied by the particles. In Eq. (2), fðx; tÞ represents the mo-
mentum distribution related to N particles centered at YiðtÞ. Fourier-spectral methods on a fully
periodic three-dimensional domain permit the numerical solution of Eqs. (1) and (2) on a uniform
grid.

r � u ¼ 0 ð1Þ

q
ou

ot

�
þ u � ru

�
¼ �rp þ lr2uþ fðx; tÞ ð2Þ

fðx; tÞ ¼
XN
i¼1

FDðx� YiðtÞÞ ð3Þ

FDðxÞ is a spherically symmetric force distribution function (4) and the width of the Gaussian
envelope is related to the particle radius a.

E. Climent, M.R. Maxey / International Journal of Multiphase Flow 29 (2003) 579–601 581



DðxÞ ¼ ð2pr2Þ�3=2
eð�r2=2r2Þ with r ¼ jxj ð4Þ

The velocity of the ith particle is determined by the local spatial average of the fluid velocity field
as

ViðtÞ ¼
Z
uðx; tÞDðx� YiðtÞÞd3x ð5Þ

In contrast to the point-force models, the particle motion is based directly on the local velocity
of the total flow field without the need for a separate model for Lagrangian tracking of the
particles. Using the FCM for an isolated particle, Maxey and Patel (2001) demonstrated ana-
lytically that the settling velocity obtained by the filtered velocity (5) matches the Stokes velocity
when the width of the Gaussian envelope is specified as r ¼ a=p1=2. The present model has been
validated for fixed cubic arrays and fixed random arrays of particles in Stokes flow by Maxey and
Patel (2001). Obviously, such results are only approximations of the true Stokes flows since no-
slip conditions on the particle surface are not explicitly imposed, but at distances of a=2 or greater
from the particle surface the flow is accurately represented. The settling velocity of a pair of
particles, aligned vertically or horizontally, is fairly well predicted by the present model when the
distance between the particles is greater than half a radius.

The ratio r ¼ a=p1=2 is also acceptable for finite Reynolds numbers with sufficiently good ac-
curacy (Dent, 1999; Lomholt et al., 2002; Liu et al., 2002). Using the finite envelope force-cou-
pling model to compare vorticity contours in the wake of a single particle, we find satisfactory
accuracy with Reynolds numbers less than 10. Improved precision can be achieved with a higher-
order multipole expansion of the coupling term (see Lomholt and Maxey, 2003). Inclusion of a
force dipole in the model increases accuracy in the representation of particle–particle or particle–
wall hydrodynamic interaction when the separation is less than one radius. The force dipole (6) is
added to the force monopole in (3)

Fdipole ¼ G
o

ox
D0ðxÞ ð6Þ

and the length scale of the finite-sized envelope D0ðxÞ, similar to (4), is set with a different width
r0 ¼ a=ð36pÞ1=6.
G is a second order tensor; the anti-symmetric part is related to the torque on the flow and the

symmetric part (stresslet) arises if a local strain-rate is experienced by the particle. An iterative
scheme is used to enforce a zero strain-rate for the averaged fluid flow located inside the spherical
region of the fluid occupied by the particle. For finite Reynolds number situations, tests on fixed
array of particles have successfully demonstrated that the force-coupling model is able to re-
produce wake effects (Dent, 1999; Lomholt et al., 2002). Moreover, including force dipole terms
Lomholt (2000) obtained the expected dynamics for particle motion close to a wall. For the simple
case of two freely evolving particles, hydrodynamic interactions modeled by the FCM induce the
well-known ‘‘drafting, kissing and tumbling’’ scenario (Lomholt, 2000; Lomholt et al., 2002). In
the context of finite Reynolds flows, Liu et al. (2002) has predicted accurately both the drag and
the lift forces experienced by a small particle in a Poiseuille flow using the FCM.

In (3), F denotes the force transmitted to the fluid by the ith particle. This comprises of the
external body force due to gravity, less any buoyancy force from the fluid, and the inertia of the
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particle. As the fluid fills the entire domain (including the particles), the simulated particles have
the same inertia as the carrying fluid. In the absence of any forces due to gravity, a particle with
the same density as the surrounding fluid will not transmit any force to the fluid. The presence
of the particle is then instead represented by the higher order dipole terms, as described by
Lomholt and Maxey (2003). The force balance for a particle of mass mp is

ðmp � mfÞ
dV

dt
þ F ¼ ðmp � mfÞg ð7Þ

where mf is the mass of the volume of fluid occupied by the particle and g is the acceleration due to
gravity. The first term in (7) represents the excess inertia of the particle relative to that of the
displaced fluid. In general F balances the drag, added-mass, lift and history forces generated by
the motion of the particle through the fluid. In a sedimenting suspension at low to moderate
Reynolds numbers the particle accelerations are not large, and generally much smaller than the
acceleration due to gravity. Therefore as a first approximation we may neglect the particle ac-
celeration term in (7), F is then kept constant equal to the net force of gravity acting on the
particle. The contribution of the excess of particle inertia will only be a small perturbation to
the motion. We did monitor the particle accelerations throughout the computations and verified
the approximation in all the presented results.

The particle Reynolds number Re is defined in terms of the particle diameter and the particle
velocity. In any experiment the net force due to gravity, and hence F, is known in advance while
the particle velocity must be determined. The force F may be characterized by a non-dimensional,
force Reynolds number, ReF ¼ qF =l2. Using a standard drag law, we have a relation between ReF
and the standard Reynolds number Re for a single isolated particle settling under gravity. For
example in a Stokes flow, we find ReF ¼ 3pRe. In the results presented, the nominal reference
value of Re is the value for an isolated particle settling with the given value of ReF , which is fixed
for a set of experiments. In all the simulations, the particle radius is kept constant to enforce the
same resolution of the fluid flow whatever Re number (0 < Re < 10). A particle diameter is
roughly equal to between five and six grid points. The terminal settling velocity for a single
particle is obtained from the numerical model and is used as the reference velocity scale for that
ReF . The velocity has nearly the same as the value predicted by the standard drag law. A small
discrepancy still exists due to the periodic boundary conditions used in the simulations, the set-
tling velocity of a single particle will be denoted V0.

As the particle force Reynolds number or the particle concentration increases, the relative level
of the particle accelerations increase as compared to g. The average particle concentration c is
defined in terms of the domain size L and particle radius a as

c ¼ N
4p
3

a
L

� �3

If the density of a particle is twice that of the fluid, so that (mp � mf ) is equal to mf , the typical
observed ratio of dV =dt to g is about 4% when Re ¼ 10 and c ¼ 12%. This represents the largest
value of the ratio in the present simulations. For Re ¼ 1, the ratio is less than 1% at the same
concentration. For a given value of ReF the precise value of the ratio is proportional to
ðmp � mfÞ=mf and the relative level of the particle acceleration is reduced if the particle density is
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closer to that of the fluid. Thus, when the Reynolds number becomes finite, inertia is included in
the model with the restriction that fluid and particles have nearly the same density.

Detailed tests of the effect of inertia and dipole terms have been done in order to validate these
assumptions. A case of finite Reynolds suspension has been selected to check the evolution of
macroscopic quantities (mean velocity and fluctuations) with the density ratio mp=mf and the
order of the multipole expansion. All the results are collected on Fig. 1. The density ratio has been
varied from 0.9 to 1.5, which is an upper limit for the explicit numerical scheme. Averages have
been computed over more than 300 non-dimensional time units based on the velocity of a single
particle and its radius. The simulations with inertia only do not show any significant changes
either in the mean settling velocity or in the fluctuations. The dipole term induces a systematic
reduction of averaged quantities but the maximum deviations are still small (4% for the settling
velocity and about 10% on fluctuations for the worst case). This systematic response of the flow
does not mean that the internal structure of the flows is significantly changed. We inspected the
spatial velocity correlation functions in both simulations (monopole only or monopole/dipole).
Only slight modifications have been observed indicating that the behavior of the suspension is
similar in the two sets of results. Therefore, in the present configuration of free settling suspen-
sions explicit particle inertia and dipole effects are only a small correction to the results obtained
with the force monopole. Neglecting these two terms in the present paper provides an important

Fig. 1. Tests of dipole and inertia effects. Settling velocity and rms fluctuations are scaled by V0. Density ratio is mp=mf .

Error bars are related to standard deviation of the mean due to temporal evolution. (
) Reference case with force

monopole only and without inertia; (�) force monopole only and inertia term; (M) force monopole, dipole and inertia

term.
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reduction of the computing time while capturing still the macroscopic effects of fluid inertia at
finite Reynolds number.

Time evolution is performed by a combination of second order Adams–Bashforth and Crank–
Nicolson schemes for the motion of the fluid and the particles. The length of the cubic domain L is
kept constant, equal to 2p. Various volume concentrations of the sedimenting suspension cor-
respond to different number of particles in the domain. Potential force barriers, similar to Glo-
winski et al. (1999), are used to prevent unphysical overlaps of particles, as a model of contact and
lubrication forces. In Stokes flow, actual contact between particles is very limited as lubrication
forces rapidly slow the approach of particles. A repulsive force Fb is added to the force-coupling
term (3) when the distance between particle centers r is less than a prescribed cut-off separation
Rref which is typically equal to 2.2a. Contact duration is generally short and most of the dynamics
is controlled by the force monopole itself. The force barrier is

Fb ¼ � Fref
2a

R2
ref � r2

R2
ref � 4a2

� �2
x ð8Þ

where x denotes the separation vector between two particles. The force barrier is added in a pair-
wise treatment of the collision, which is consistent with Newton�s third law (each particle expe-
riences an equal and opposite force). We have performed detailed tests of different collision
barriers (varying Fref and Rref ) to demonstrate that the finite Reynolds suspension is insensitive to
the microscopic description of the collisions (Dance et al., submitted to Phys. Fluids, 2003). This
rough treatment of the near-field hydrodynamics of particles near contact will restrict the study to
dilute suspensions (concentration lower than 15%) that is consistent with the use of the force
monopole only.

3. Stokes flow assumption

Most of the studies on sedimenting solid particles have been performed for low Reynolds
number flows. This particular situation corresponds to a physical configuration of small particles
(10–100 lm) settling in liquids (water, glycerin or silicon oils). The density of a particle should be
close to the fluid density to be consistent with the neglect of the excess inertia of a particle. Ex-
perimentally, particles could be polypropylene (density 0.91) or polyamide (density 1.12). As an
example, a single particle of polyamide (radius 50 lm) settling in water corresponds to Re ¼ 0:05.
Larger particles could be used in more viscous fluids. Obviously, Brownian diffusion is negligible
and settling characteristics are related to multi-body hydrodynamic interactions between all the
particles. Inertia of fluid and particulate phases are commonly both neglected. Theoretical pre-
dictions (Batchelor, 1972) of average settling velocity provide valuable results restricted to very
low concentration of uniformly distributed particles. In spite of many efforts, no evident answer
has been given to the surprising theoretical divergence of the velocity fluctuations (Caflish and
Luke, 1985). In this theory, a uniformly distributed suspension is exposed to fluctuations levels
directly proportional to container dimensions. Although numerical simulations based on multi-
pole expansion of Stokes flow dynamics (Ladd, 1993) or lattice-Boltzmann approach (Ladd, 1996,
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1997) exhibit similar behavior, most experiments (Nicolai et al., 1995; Nicolai and Guazzelli, 1995;
Segr�ee et al., 1997; Ham and Homsy, 1998) demonstrate no such trend. A critical issue may be
the assumption that particles remain uniformly distributed. Therefore, recent theoretical ap-
proaches have proposed more appropriate alternatives such as screening mechanisms due to
side-walls (Brenner, 1999) or stably stratified suspensions (Luke, 2000), as possible sources of
inhomogeneity. Numerical simulations with a lattice-Boltzmann method (Ladd, 2002) indicate
that vertical walls modify the fluctuations level but do not suppress the linear increase with the
box size, whereas the presence of upper and lower walls leads to saturation. Presence of a
vertical concentration gradient has been observed both experimentally (Tee et al., 2002) and
numerically (Mucha et al., submitted to J. Fluid Mech., 2002; Dance, 2002) and is likely to be a
major factor in the saturation of the velocity fluctuations. Transient evolution of this stable
concentration would control the fluctuations level indicating that steady batch sedimentation is
never achieved.

As low Reynolds suspensions have been extensively studied, it is an appropriate test case for the
FCM. Dynamic simulations of Stokes suspensions have been performed on four mesh grids 323,
643, 1283 and 2563 for different particle concentrations. Initial seeding of the particles is random
and ensemble averages are performed at distinct time steps, beginning from different initial
conditions. After a short transient evolution (skipped in the statistics), the macroscopic quantities
reach equilibrium. Averages are first made, at any instant, over all particles present in the sus-
pension giving a temporal evolution of the mean quantities. Then a long term, time-average is
formed over independent times step on a total interval of more than 1000 Stokes times ts where
ts ¼ a=Vs and Vs is the Stokes settling velocity of a single sphere of radius a. To achieve accuracy of
the temporal discretisation of the particle motion, we kept a constant time step equal to ts=8 in all
the simulations. Error bars added to the mean values are related to the standard deviation of the
mean and indicate the level of fluctuations of mean quantities in the time series.

Analysis of the velocity fluctuations of the particles, shown in Fig. 2, indicates that this quantity
increases with the relative domain size L=a, for a fixed average concentration c. This trend agrees
with the theoretical prediction of Caflish and Luke (1985). Indeed, with the assumption of a
homogeneous random suspension, they demonstrated that vertical velocity fluctuations scaled
with VsðcL=aÞ1=2 in a domain of width L. Hinch (1988) proposed a similar scaling based on the
statistical fluctuations in the number of particles locally occurring in a system with a random,
uniform Poisson distribution for the particles. The statistical fluctuations may lead to a local
excess number of particles on the order of n0 ¼ ðNl3=L3Þ1=2 in a cluster or blob of scale l. A balance
of viscous drag forces and excess weight or buoyancy, related to the particle number fluctuation n0

in the blob, leads to a velocity fluctuation of the order of VSðcl=aÞ1=2. When the fluctuating cluster
or blob size l is comparable to the size of the domain L this estimate matches that of Caflish and
Luke (1985). The results in Fig. 2, where the average volume fraction c is fixed at 6%, match the
scaling of the velocity fluctuations as ðL=aÞ1=2 in a periodic domain as L=a ranges from 12 to 96.

Segr�ee et al. (1997) determined experimentally characteristic length scales for the particle clusters
in very large systems. If the box size is smaller than these physical length scales of the largest
clusters (connected to particle radius and suspension concentration) then relative velocity fluc-
tuations will increase with larger domain size. Comparison of the ratio between the size of the
numerical domain and the particle diameter shows that our simulations are still below the
characteristic length scales observed experimentally. Therefore, only the results on the 1283 do-
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main are presented in order to compare with the experimental data of the literature. Testing other
arguments such as vertical concentration gradients and sidewalls effects are outside of the scope of
the present paper. We have to note that the mean settling velocity is nearly independent of the box
size (Fig. 2). A significant reduction of the error bars points out that with a larger domain the
simulating box contains more eddy structures of various length scales. So the averages performed
on the particles velocity at each time step are more representative of the overall evolution of the
mean quantity.

Evolution of the average settling velocity with volume concentration (Fig. 3) is in good ac-
cordance with both the experimental results of Nicolai et al. (1995) and the empirical correlations
of Richardson and Zaki (1954). The rms vertical velocity fluctuations (Fig. 4) are only in quali-
tative agreement, as our simulation domain does not capture the largest scales involved in low
Reynolds suspensions. In the dilute limit, we can verify that velocity fluctuations scale with � c1=2

(Caflish and Luke, 1985; Hinch, 1988). The anisotropy coefficient, comparing vertical and hori-
zontal velocity fluctuations, points out clearly that both fluid and particles motions are dominated
by the vertical velocity fluctuations associated with the gravitational settling. Vertical fluctuations
are about twice the horizontal ones. Both of them have Gaussian probability density functions,
which is consistent with diffusion-like dynamics.

To evaluate hydrodynamic self-diffusivities, we computed the Lagrangian auto-correlation
functions hViðtÞViðt þ sÞi of the temporal evolution of the particles velocity fluctuations (Fig. 5).

Fig. 2. Effect of the domain width on settling velocity and rms fluctuations level (c ¼ 6%, Stokes flow). Settling velocity

and fluctuations are scaled by V0. Error bars are related to standard deviation of the mean due to temporal evolution.

(- - -) Scaling proposed by Caflish and Luke (1985) and Hinch (1988) � ½L=a�1=2.
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Fig. 3. Average settling velocity scaled by V0. (O) Experiments of Nicolai et al. (1995); (�) Stokes flow simulation on

1283 grid; (- - -) empirical correlation of Richardson and Zaki (1954) with n ¼ 4:5.

Fig. 4. Vertical velocity fluctuations scaled by V0. (O) Experiments of Nicolai et al. (1995); (�) Stokes flow simulation

on 1283 grid; (- - -) scaling proposed by Caflish and Luke (1985) and Hinch (1988) � c1=2 for dilute suspension.
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The decrease of the horizontal velocity correlation function is slightly faster than the vertical one.
Thus, the velocities are uncorrelated for a non-dimensional time, scaled by tS, ranging from 20 to
100 for different concentrations. The relaxation response of the particles velocity obtained in our
homogeneous suspension is consistent with experimental results of Nicolai et al. (1995) and agree
with lattice-Boltzmann simulations of Ladd (1997). Quantitative comparison of the self-diffusion
coefficients cannot be achieved because the fluctuations level depends on the periodic box size
(Fig. 2). Anisotropy is over predicted as obtained by Ladd (1997) with similar boundary condi-
tions. As an illustration of velocity fluctuations in a homogeneous suspension of the particles, we
present in Figs. 6 and 7 some snapshots of the velocity fields. Fig. 6 is one of the vertical planes of
a 2563 simulation. Organized eddy-like structures of various widths are noticeable as observed by
previous authors (Segr�ee et al., 1997; Bernard-Michel et al., 2002) in PIV measurements. In a
horizontal plane (Fig. 7), eddy structures seem to be even more organized, collecting the particles
in large-scale spiraling motions.

As stated before, the presented Stokes flow simulations agree with other prior results on sus-
pensions dynamics. They demonstrate that the force-coupling model used here is able to capture
the principal features of large-scale hydrodynamic interactions between the particles. Of course,
the assumption of periodicity for the boundary condition restricts the comparisons as most of the
recent studies point out the effects of sidewalls and vertical concentration gradient. The periodic
domain though is a simple geometry for which we can compare the results for Stokes flow with
those obtained at finite Reynolds numbers, without introducing other factors.

Fig. 5. Lagrangian velocity auto-correlation functions. Stokes flow and c ¼ 6%. Time is scaled by a=V0. (––) Vertical
velocity. (- - -) Horizontal velocity.
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Fig. 7. Velocity field in a horizontal plane for Stokes flow (c ¼ 6% in a 2563 simulation).

Fig. 6. Velocity field in a vertical plane for Stokes flow (c ¼ 6% in a 2563 simulation).
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4. Finite Reynolds number sedimentation

It is well known that the settling of two particles in Stokes flow conditions is characterized by
an increase in the fall velocity while the particle separation remains unchanged. This particular
feature is related to the symmetry properties of Stokes flow. Absence of inertia in the motion of
the continuous phase suppresses non-linear wake interactions and gives rise to the long-range
velocity perturbations that decrease slowly, inversely proportional to the separation distance
between the particles. In this section we examine the impact of wakes and asymmetry in non-zero
Reynolds number sedimentation. Hydrodynamic interactions take place over a shorter length
scale, as fore-and-aft wake asymmetry is crucial. For example, the simple case of two particles
interacting leads to the ‘‘drafting, kissing and tumbling’’ scenario (Fortes et al., 1987). One can
expect that more complex interactions exist in random suspensions where more than two particles
are involved. Relevant questions deal with the evolution of macroscopic statistical quantities with
particle Reynolds number. To our knowledge, the velocity fluctuations in a homogeneous sus-
pension have not been extensively studied in the literature theoretically, experimentally or nu-
merically. Some interesting aspects of fluctuations level can be found in the theoretical predictions
of Koch (1993) or the experimental data analysis by Cartellier and Rivi�eere (2001).

Results on average characteristics of the suspension are presented for particulate Reynolds
numbers of 0.1, 1, 5 and 10. A mean concentration of 12% involves the simultaneous simulation of
N ¼ 3200 particles trajectories in a periodic domain of size L ¼ 2p and a numerical resolution of
128 points in each direction. We remark that inertia is now present in the flow and we assume that
particles have nearly the same inertia as the displaced fluid, as noted in Section 2. In these flows
generated by sedimenting particles, at low to moderate Reynolds numbers, the instantaneous
particle accelerations remain very small compared to the acceleration due to gravity and the excess
inertia of the particles is always negligible compared to the buoyancy force. This has been
monitored and verified for all the simulation results given here.

For each configuration, corresponding to fixed values of the concentration and the particulate
Reynolds number, particles are initially seeded at random positions without overlap. An initial
flow field is set by an Oseen approximate solution and the FCM is then used to determine the
evolution of the suspension. Settling velocity and relative fluctuations are obtained from averages
over multiple time steps after the transient evolution has passed and a statistical equilibrium is
reached. Averages are performed on more than 300 particulate time units, based on V0t=a, where
V0 is the settling velocity of a single particle of radius a. The time step is roughly equal to 1/20 of
the time unit. Time to reach statistical equilibrium from the initial condition increases with both
the volumetric concentration of the suspension and the particulate Reynolds number Re ¼ V02a=m.
Tests with different initial random seeding have demonstrated that initial conditions have no
significant influence on the evolution of mean values. For each concentration, five simulations
have been performed ranging from a Stokes flow to situations where wake asymmetry is present.
Fig. 8 displays clearly the trend that the average settling velocity is appreciably reduced when the
characteristic Reynolds number of the particles is increased. The settling velocity is non-dimen-
sionalized by the free-fall velocity of a single sphere in the same domain. For moderate concen-
trations (5 < c < 20%), best fits of V =V0 with the Richardson–Zaki law in the form ð1� cÞn
indicate that the exponent n decreases as Re grows. Such a trend has also been mentioned by Pan
et al. (2002) in their simulations of a fluidized bed.
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The relative velocity fluctuations (Fig. 9) have the same tendency. This indicates that the
variations in the vertical velocity of the particles are much less pronounced than in a Stokes flow.
Comparison of vertical and horizontal velocity fluctuations indicates that anisotropy is still
strong. Horizontal velocity fluctuations are nearly three times smaller than the vertical ones, in-
dicating the influence of forcing due to gravity. As observed in Stokes flows, the probability
density functions of both horizontal and vertical velocity fluctuations are strictly Gaussian. Fig.
10 shows results for the vertical velocity fluctuations.

The same anisotropy between the velocity components controls the diffusive motion of the
particles whatever the particulate Reynolds number and the volumetric concentration. At low but
finite Re (Re ¼ 0:1 the relaxation of the temporal velocity auto-correlation functions
hViðtÞViðt þ sÞi shows an approximate exponential decrease (Fig. 11). The time for the horizontal
velocity fluctuations to become uncorrelated is about 20 non-dimensional time units for con-
centrations ranging from 3% to 12%. By contrast, the auto-correlation of the vertical velocity
fluctuations have a slower decrease. Therefore, the Lagrangian integral time scale is always larger
for vertical fluctuations. As the vertical velocity fluctuations level is about three times the hori-
zontal one, hydrodynamic self-diffusivities of particles are highly anisotropic. When fluid inertia is
enhanced (Re ¼ 10), the exponential decrease is significantly faster for both horizontal and ver-
tical correlation functions (Fig. 12). This indicates that the diffusive motion of the particles has a
much shorter time scale and the distance over which fluctuations are correlated is shorter too. This
is consistent with our observation that stable statistical averages could be obtained over a shorter
time interval as compared to Stokes flows. As both the velocity fluctuation levels and the

Fig. 8. Average settling velocity scaled by V0 in 1283 simulations: (�) Stokes flow, (�) Re ¼ 0:1, (þ) Re ¼ 1, (
) Re ¼ 5,

(}) Re ¼ 10.
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Fig. 10. Probability density function of the vertical velocity fluctuations (c ¼ 12%): (�) Stokes flow, (�) Re ¼ 0:1, (þ)

Re ¼ 5, (
) Re ¼ 10; (- - -) Gaussian distribution.

Fig. 9. Relative vertical velocity fluctuations Vrms=Vmean in 1283 simulations: (�) Stokes flow, (�) Re ¼ 0:1, (þ) Re ¼ 1,

(
) Re ¼ 5, (}) Re ¼ 10.
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Fig. 11. Lagrangian velocity auto-correlation functions (Re ¼ 0:1). Time is scaled by a=V0: (––) vertical velocity, (- - -)
horizontal velocity; (�) c ¼ 3%, (M) c ¼ 6%, (�) c ¼ 12%.

Fig. 12. Lagrangian velocity auto-correlation functions (c ¼ 12%). Time is scaled by a=V0: (––) vertical velocity, (- - -)
horizontal velocity; (�) Re ¼ 0:1, (}) Re ¼ 10.
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Lagrangian integral time scale decrease when Re grows, hydrodynamic self-diffusivities of the
particles are drastically reduced.

Even though our quantitative results could still be size-dependent, the most critical quantity
being the relative velocity fluctuations, global behavior due to Reynolds number variation should
be reliable. If the propositions of Segr�ee et al. (1997) on the swirls and their average size are correct
then direct simulations on sedimentation problems are still not possible with available computing
resources due to the huge number of grid points needed for a real geometry. We checked the
evolution of the settling velocity and the velocity fluctuations for a selected configuration c ¼ 6%
and Re ¼ 5 (Fig. 13). We note that the mean settling velocity is nearly independent of the box size
with standard deviation of the mean quantity decreasing as more samples of organized eddy-like
structures are present. The most noticeable difference compared to Stokes flow suspensions is the
evolution of the velocity fluctuation levels. The horizontal and vertical fluctuations were found to
have the same trend. For the two largest domains L=a ¼ 48 and 96, the rms value of the particles
velocity fluctuation tends to saturate at a finite level. Such a behavior was suggested by Hinch
(1988) and a screening mechanism induced by inertia was proposed in the theoretical analysis of
Koch (1993) under the assumption of Oseen flow for the wake of the particles. Koch estimated the
evolution of the velocity fluctuations in the fluid phase in terms of linearly superimposed wakes
disturbances. We can guess that particles velocity should follow a similar trend. Although the
evolution of fluctuation levels seems to be significantly different in the experiments reported by
Cartellier and Rivi�eere (2001), our fit of the simulation data are consistent with Koch�s prediction

Fig. 13. Effect of the domain width on settling velocity and rms fluctuations level (c ¼ 6%, Re ¼ 5). Settling velocity

and fluctuations are scaled by V0. Error bars are related to standard deviation of the mean due to temporal evolution.

(––) Scaling proposed by Koch (1993).
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� ½ln L=a�1=2. The divergence may still exist but is considerably slower than � ½L=a�1=2 for Stokes
flows, as discussed later.

A way to elucidate such behavior is to study statistics related to the microstructure of the
suspension or relative positions of the particles. A number of statistical measures have been
proposed in the literature to quantify particle dispersion in terms of pair probability density
functions or repartition weighted by a second-order Legendre polynomial. Often, systematic
analysis of the microstructure was performed to test theoretical arguments regarding random
Poisson statistics (Lei et al., 2001) or the screening mechanisms proposed by Koch and Shaqfeh
(1991). A simple relevant quantity is the average minimum distance between the particles, aver-
aged over all the particles involved in the suspension and over several time frames. The distances
are made dimensionless with regard to the typical length scale of homogeneous repartition
að1þ c1=3Þ. Of course, this distance decreases with increasing concentration but an interesting
feature is obtained for a fixed concentration. A clear tendency of continuously increasing distance
with particulate Reynolds number is observed in Fig. 14 at moderate concentration. This means
that complex sequences of non-linear interactions (drafting, kissing and tumbling) enhance
scattering in the relative particle positions. Therefore, the particulate phase is dispersed more
evenly over the whole domain and the average settling velocity is reduced. Similar arguments can
provide an explanation too for the decrease of the relative velocity fluctuations. The creation of
larger clusters of particles would enhance local variations in the particles settling velocity. But as
wake-induced effects tend to disperse the particles in the entire domain, the relative velocity
fluctuations are reduced as Reynolds number is increased.

Fig. 14. Average minimum distance scaled by að1þ c1=3Þ: (�) Re ¼ 0:1, (þ) Re ¼ 1, (
) Re ¼ 5, (}) Re ¼ 10.
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A snapshot of the velocity field and corresponding particle positions (Fig. 15) show the scat-
tering effect of increased Reynolds number for a concentration of 6%. The selected vertical plane
of the three-dimensional domain has been chosen in order to display roughly the mean number of
particles. A reduction in the occurrence of clusters is related to the smaller swirls in the fluid
velocity field as inertia in the continuous phase is increased, with increasing Reynolds number.
The impact of fluid inertia is most important at the large scale, rather than locally, as it is too in
Oseen flow theory. The particles that are not precisely centered in the selected vertical plane are
shown as smaller circles based on their cross-section with the plane. Animations of the temporal
evolution of the particle positions and velocity fields show clearly that collective effects are of
particular importance in a sedimenting suspension.

For Stokes flow, as shown in Figs. 6 and 7, the swirls contain more particles than in finite
Reynolds number flows. This is associated with a reduction of the integral Eulerian length scale
when Re grows. In Fig. 16, the spatial velocity correlation of the vertical fluid velocity fluctuations
is shown as a function of vertical separation. In each instance, the correlation decreases more
rapidly as the Reynolds number increases. Typical length scales associated with swirls in the fluid
velocity field are related to the spatial vertical velocity correlation. Correlations with either ver-
tical or horizontal separations show the same trend. A first observation might be that the nu-
merical domain is too small to avoid confinement by the periodic boundary conditions. In the best
case, the domain corresponds to five integral length scales. The qualitative trends and physical
explanations are undoubtedly correct even though the quantitative levels could differ from ex-
perimental data.

Fig. 15. Velocity field in a vertical plane for finite Reynolds flow (c ¼ 6% and Re ¼ 5 in a 2563 simulation).
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5. Conclusion

The purpose of the present paper was to investigate the behavior of non-Brownian suspensions
under low, but finite particle Reynolds number. Spherical solid particles are sedimenting in an
initially quiescent fluid. Our force-coupling model of hydrodynamic interactions was first tested
for Stokes flow conditions. Good agreement with the extensive experimental data and empirical
correlations was obtained when both fluid and particle inertia was neglected. The level of the
velocity fluctuations is found to depend on the size of the periodic domain. Scaling of these
fluctuations is in accordance with theoretical predictions for homogeneous suspension in Stokes
flow. Lagrangian auto-correlation functions exhibit a classical exponential relaxation and integral
times scale range from 20 to 100 particulate time units, comparable to previous simulations or
experiments.

New results on sedimentation are presented when fluid inertia is included in the continuous
phase equations. At finite Reynolds number, non-linear interactions between two particles lead to
sequences of drafting, kissing and tumbling. Due to wake asymmetry, complex interactions are
encountered and our numerical simulations provide new insights on the average settling velocity
and relative velocity fluctuations. A clear tendency for a reduction of both the average settling
velocity and the relative fluctuations is observed when particle Reynolds number is varied from 0
to 10. A study of the correlation between these results and the internal structure of suspension is a
way to elucidate �attractive� or �repulsive� effects of hydrodynamics interactions of the particles in
random suspensions. From a comparison of the average minimum distance between the particles

Fig. 16. Spatial correlation of the vertical velocity vs. vertical coordinate: (––) Re ¼ 0:1, (- - -) Re ¼ 1, (-�-�-) Re ¼ 5, (� � �)
Re ¼ 10.
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and the integral length scale of the velocity field, we can claim that the main effect of finite
Reynolds numbers is an enhancement of particle scattering in the entire domain. Cluster for-
mation is less pronounced when fluid inertia is included. As a result, all the particles are sedi-
menting with a more uniform velocity distribution and fluctuations of the settling velocity are
reduced.

In Fig. 17, the domain size dependence of both Stokes and finite Reynolds suspensions are
displayed together in order to highlight their very different behaviors. The mean settling velocity is
nearly independent of the domain width L=a. On the other hand, vertical velocity fluctuations
diverge like � ½L=a�1=2 for Stokes flow and tend to saturate at a finite level for Re ¼ 5. The the-
oretical prediction (Koch, 1993) that the fluid velocity fluctuations scale as ½ln L=a�1=2 gives a very
slow variation that could easily be damped by any small experimental uncertainty in particle size
or density distributions, or homogeneity of the suspension. The introduction of inertia in ho-
mogeneous settling suspension induces a screening mechanism related to the finite extent of the
particles wake, the so-called inertial screening.
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